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The effect of  a radial change in the wall temperature on heat transfer in centrifugal turbulent f low in a gap 

between parallel rotating disks is investigated. Cases of positive, approximately constant, and negative radial 

gradients of the disk temperature are considered. The results of calculating by the integral me thod  are in 

good agreement with the known experiments. I t  is shown that the change in the wall temperature has an 

insignificant effect in the region of the source and a determining effect in the E k m a n  layers, f inal ly  giving 

rise to a zone with return heat f lux  at the periphery of the cavity with negative and approximately constant  

gradients of  the disk temperature. 

Introduction. The  end disk surfaces of the rotors of gas turbines are often cooled by radial blowing [1, 2 ]. 

In this case, air  enters the cavity between the disks near  the axis of rotation and moves radially toward  the 

per iphery.  

We investigate the effect of the distribution of the temperature  of a blown wall on the local Nussel t  number .  

Exper imenta l  data [3, 4 ] and the results of calculating by the integral method of [5, 6 ] are compared. T h e  cases 

of positive, approximately constant ,  and negative d T w / d r  on the upstream disk for an axial air supply to the  cavity 

under  the conditions fli = 0 are considered.  

Structure  of Flow in the Gap.  The  experiments generalized in monograph 131 show that when  the  entry 

of the flux into the cavity is axial the structure of flow has the following form (Fig. 1). The  entering air  (totally or 

partially) in the form of an impact jet strikes the downstream disk and after that moves radially outward  in the 

form of an annular  wall jet. The  latter generally contains more than half or the entire enter ing air, but this si tuation 

does not prevail to the end of the cavity. In the radial coordinate r = r e on the downstream disk, part of the air  is 

re leased from the wall jet and is finally drawn in by the boundary  layer on the upstream disk. 

In the regions r < r e on the upper and lower disks, boundary  layers develop that  draw in air f rom the flow 

core. When r > r e the ent ire  air  is drawn into the so-called Ekman boundary layers [3, 4 ] with a cons tan t  flow 

rate rhd in them. With the radial  en t ry  of the flux, rhd = 0.Srh = const in each layer.  With the axial en t ry  in the 

region of the impact jet the fraction of the air on the downstream disk is larger than the fraction on the upst ream 

disk. However,  as has been indicated above, the air between the disks is redistributed even before the development  

of the Ekman layers, in which the condition rhd = 0.5rh = const on both disks still holds true [3 ]. 

In the region of the suction boundary  layers, the core temperature Too is constant  and is equal to Ti. In 

the region of the Ekman layers,  the suction of cold air from the core into the boundary  layers ceases, and  the  latter,  

conversely,  begin to release heat  to the core. This leads to an increase in the tempera ture  Too, which becomes  itself 

one of the unknowns. 

Integral Method. Integral  equations of dynamic and thermal  boundary layers have the form: 

d dVr'oo (Vr, oo - Vr) d z  - f (v~,oo - v~o ) d z  = rT:wr/P,  ~r r v r (Vr, oo - Vr) d + r----d-f-r 0 
0 0 
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Fig. 1. Distribution of streamlines in rotating cavity with axial air supply 

(fli < 1): 1) region of source; 2) suction boundary layer; 3) Ekman layer;  4) 

internal  flowless rate core; 5) region of outlet from gap; 6) upstream disk; 7) 

downstream disk. 
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The profiles of the velocity v9 and Vr, the tangential stresses Tw9 and rwr, the profile of the tempera ture  T, 

and the local Nussel t  numbers  Nu are determined by the following expressions I5, 6 ]: 

~ = f ,  7~ = v~ Ix + (a - x) (1 - ~)21; (1) 

rwr = - aZw~ o , rws o = - sgn (1 - 3) rw (1 + ct2) -1/2",  (2) 

c f /2  = ~:w/(PV.) 2 Cn 2/(n+l) Re  -2n / (n+D 
= V .  ; (3) 

( T -  r w ) / ( r o o  - Tw) = ~'T T , (4) 

V.r T w - Too 
Nu = St T Pr Tw _ Ti , (5) 

St = C ('~7"-')/O-n) Rev.  nT (c f /2)  ( ' - n r ) / 2  a -nT" Pr -no . (6) 

Here -~ = (v~, - wr) / (v~,,oo - ear), ~r = Vr/ ( ear - vw.oo), Rev.  = p V . 6 / p ,  V. = earlfl - 11 (1 + Ct2) 1/2. 

The  bounda ry  layer  equations upon integration in view of formulas (1)-(6) reduce to a form that makes it 

possible to numerical ly  solve them by the R u n g e - K u t t a  method and contain the unknowns a ,  6, and A in the 

897 



T| 
T,. /T i  

No 

500 

-'---- ~ \ .  i ,  "'~'.. ' 

�9 \ 

l l - 2  6 \ , ,  / '  / / 

1.0 -500  i i ~ - 

0.2 0,4 0.6 0.8 x ).2 0.4 0.6 0.~8 x 

Fig.  2. R a d i a l  d i s t r i b u t i o n  of wal l  t e m p e r a t u r e  T w / T i  ( c u r v e s  1-3,  

t r a n s f o r m e d  e x p e r i m e n t s  of [4 ]) an d  of flow core Too/Ti (curves  4-6,  

c a l c u l a t i o n  by  p r o p o s e d  m e t h o d ) :  1 and 4) dTw/dr>O; 2 and 5) 

d T w / d r  -~ 0; 3 and 6) d T w / d r  < O. 

Fig. 3. Nusselt numbers  in cavity (Re~ = 3.2- 106 for cases 1 and 4, and  Re~ 

= 3.3- 106 for cases 2, 3, 5, and 6): 1-3) experiment  [4]; 4-6) calculation by 

proposed method; 1 and 4) d R w / d r  > 0; 2 and 5) d T w / d r  ~ 0; 3 and 6) 

region of the source or  a ,  fl, and Too (with the constraint  A = const) in the Ekman layers  (where Vr, oo = 0). Details 

of the procedure  are presented in [5, 6 ]. 

In the case in question, comparison with the exper iments  was made at a sufficient distance from the region 

of the inlet to the cavity, where the authors of [3, 4] obtained experimental  data for the Nusselt number.  Here  

with a sufficient degree of accuracy we can set Vr, oo = 0, as in the region of the Ekman layers (that is, the fraction 

of radial  flow in the core here is small as compared to the boundary  layers and has an insignificant effect on the 

Nu number ) .  

Local  Nusseit  Number.  Comparison with Experiment .  Experimental  tempera ture  distributions used in the 

calculat ions are presented by Northrop and Owen [4 ] in the form of smoothing curves. To employ them in 

calculating by the integral method, we approximate these curves in the functional form of a polynomial of the 7th 

degree and  show them in Fig. 2 in the t ransformed form. 

T h e  experiments [3, 4 ] selected for comparison were carried out for fli = 0, Re~ = (3 .2 -3 .3 ) -  106, r i /b  = 

0.103, s / b  = 0.138, b = 0.428 m, and Cw = 7000. Th e  calculations were performed for n = 1/10 and Cn = I 1.5 (C n 

for the remaining values of n are given in [5, 6 ]); np --- 0.5. The  value n = 1/10 corresponds to high R %  numbers.  

The tempera ture  profiles, as is known, are more conservative with respect to the Rer number ,  which caused the 

selection of the value nT- = 1/7. 

T h e  results of calculating the change in the core temperature  Too and the Nusselt  numbers with positive, 

approximately  constant,  and negative gradients of Tw are  shown in Figs. 2 and 3. Calculation was performed for 

the ups t ream disk (the experimental  data for Tw and the Nu number  are presented in [4 ]). 

In the region of the suction boundary  layers,  Too = Ti, while the Nusselt number  increases as in the case 

of flow about  a free disk. In the region of the Ekman layers ,  the rate of increase in the Nusselt  number  is re ta rded  

and subsequent ly  begins to decrease (Fig. 3) due to an increase in the local values of Too (Fig. 2). This decrease 

in the region of the Ekman layers is the more distinct, the smaller the difference between temperatures Tw and 

Too due  to the dissimilar distributions of T w along the radius of the disk. 

Both the experiments and the calculations by the integral method show that,  for the cases d T w / d r  -~ 0 and 

d T w / d r  < 0, the region of negative Nusselt numbers  occurs at the periphery. Physically this means that because 

of the high rate of decrease in the wall temperature  Tw and  the increase in the local air temperature  T~ there  is a 

region in which the temperature Too becomes higher  than  the disk temperature Tw (Fig. 2). That  is what leads to 
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a change of sign of the heat flux: the air begins to heat up the disk rather than the reverse, as happened practically 
in the entire cavity. 

C O N C L U S I O N S  

1. The results of calculating by the integral method are in good agreement with the known experiments. 

2. A change in the wall temperature has an insignificant effect in the region of the source and a determining 

effect in the Ekman layers. In this region, there ultimately occurs a zone with negative Nusselt numbers (the return 

direction of the heat flux) at the periphery of the cavity with negative and approximately constant gradients of the 

disk temperature. 

N O T A T I O N  

b, radius of flux outlet from cavity, m; Cp, specific heat at constant pressure, J / (kg.K);  Cw -- t h / ~ b ) ,  

dimensionless mass radial flow rate through cavity; thd and th, mass flow rate through boundary layer and cavity 

as a whole, kg/sec; Nu = qwr/[;t(Tw - Ti) ], local Nusselt number; Pr --ItCp/2, Prandtl number; qw, heat flux on 
lhe wall, W/m2; r, ~o, and z, radial, tangential, and axial coordinates; Re~ =pwb2/~t, rotational Reynolds number; 

s, width of gap between disks, m; SI = qw/lpV.cp(Tw - T~) ], Stanton number; T, temperature, K; vr, vv,, and Vz, 
radial, tangential, and axial velocities, m/see; x = r/b, dimensionless radial coordinate; a, tangent of swirl angle 

on wall; /5 = v~o,oo/(cor), dimensionless tangential velocity in core of flux; 3 and 6T, thicknesses of dynamic and 

thermal boundary layers, m; A = c~r/c~, relative thickness of thermal boundary layer; x -- vr,~/(wr - vr tangent 

of swirl angle in flow core; A, thermal conductivity, W/(m" K);/z, dynamic-viscosity factor, Pa-sec; ~ - z/c~ and ~r 

= z/C~T,  dimensionless norrnals to coordinate surface; p, density, kg/m3; 7:~o =/~Ov~/dz, z r = / ~ O v r / d z  , tangential 
and radial tangential friction stresses, Pa; w, angular rotational velocity, 1/sec. Subscripts: w, wall; 0% external 

boundary of boundary layer; i, inlet to cavity; e, boundary between source region and Ekman layers; d, disk; T, 

thermal; f, friction. 
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